Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36553216

RESUMO

Long non-coding ribonucleic acids (LncRNAs) are recently known for their role in regulating gene expression and the development of cancer. Controversial results indicate a correlation between the tissue expression of LncRNA and LncRNA content of extracellular vesicles. The present study aimed to evaluate the expression of different LncRNAs in non-small cell lung cancer (NSCLC) patients in tumor tissue, adjacent non-cancerous tissue (ANCT), and exosome-mediated lncRNA. Tumor and ANCT, as well as serum samples of 168 patient with NSCLC, were collected. The GHSROS, HNF1A-AS1, HOTAIR, HMlincRNA717, and LINCRNA-p21 relative expressions in tumor tissue, ANCT, and serum exosomes were evaluated in NSCLC patients. Among 168 NSCLC samples, the expressions of GHSROS (REx = 3.64, p = 0.028), HNF1A-AS1 (REx = 2.97, p = 0.041), and HOTAIR (REx = 2.9, p = 0.0389) were upregulated, and the expressions of HMlincRNA717 (REx = −4.56, p = 0.0012) and LINCRNA-p21 (REx = −5.14, p = 0.00334) were downregulated in tumor tissue in contrast to ANCT. Moreover, similar statistical differences were seen in the exosome-derived RNA of tumor tissues in contrast to ANCT samples. A panel of the five lncRNAs demonstrated that the area under the curve (AUC) for exosome and tumor was 0.937 (standard error: 0.012, p value < 0.0001). LncRNAs GHSROS, HNF1A-AS1, and HOTAIR showed high expression in tumor tissue and exosome content in NSCLC, and a panel that consisted of all five lncRNAs improved diagnosis of NSCLC.

2.
Phytother Res ; 36(1): 189-213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697839

RESUMO

Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Curcumina/farmacologia , Humanos , Neoplasias/tratamento farmacológico
3.
Eur J Pharmacol ; 908: 174344, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34270987

RESUMO

Considering the fact that cancer cells can switch among various molecular pathways and mechanisms to ensure their progression, chemotherapy is no longer effective enough in cancer therapy. As an anti-tumor agent, doxorubicin (DOX) is derived from Streptomyces peucetius and can induce cytotoxicity by binding to topoisomerase enzymes to suppress DNA replication, leading to apoptosis and cell cycle arrest. However, efficacy of DOX in suppressing cancer progression is restricted by development of drug resistance. Cancer cells elevate their metastasis in triggering DOX resistance. The epithelial-to-mesenchymal transition (EMT) mechanism participates in transforming epithelial cells into mesenchymal cells that have fibroblast-like features. The EMT diminishes intercellular adhesion and enhances migration of cells that are necessary for carcinogenesis. Various oncogenic molecular pathways stimulate EMT in cancer. EMT can induce DOX resistance, and in this way, upstream mediators such as ZEB proteins, microRNAs, Twist1 and TGF-ß play a significant role. Identification of molecular pathways involved in EMT regulation and DOX resistance has resulted in using gene therapy such as microRNA transfection and siRNA in overcoming chemoresistance. Furthermore, curcumin and formononetin, owing to their cytotoxicity against cancer cells, can suppress EMT in mediating DOX sensitivity. For promoting efficacy in DOX sensitivity, nanoparticles have been developed for boosting ability in EMT inhibition.


Assuntos
Doxorrubicina , Transição Epitelial-Mesenquimal , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas Nucleares , Proteína 1 Relacionada a Twist
4.
Biomolecules ; 11(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670518

RESUMO

MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19-24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasias Pulmonares/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Int J Biol Macromol ; 180: 608-624, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662423

RESUMO

Gastric cancer (GC) is a leading cause of death worldwide. GC is the third-most common cause of cancer-related death after lung and colorectal cancer. It is also the fifth-most commonly diagnosed cancer. Accumulating evidence has revealed the role of signaling networks in GC progression. Identification of these molecular pathways can provide new insight into therapeutic approaches for GC. Several molecular factors involved in GC can play both onco-suppressor and oncogene roles. Sex-determining region Y (Sry)-box-containing (SOX) family members are transcription factors with a well-known role in cancer. SOX proteins can bind to DNA to regulate cellular pathways via a highly conserved domain known as high mobility group (HMG). In the present review, the roles of SOX proteins in the progression and/or inhibition of GC are discussed. The dual role of SOX proteins as tumor-promoting and tumor-suppressing factors is highlighted. SOX members can affect upstream mediators (microRNAs, long non-coding RNAs and NF-κB) and down-stream mediators (FAK, HIF-1α, CDX2 and PTEN) in GC. The possible role of anti-tumor compounds to target SOX pathway members in GC therapy is described. Moreover, SOX proteins may be used as diagnostic or prognostic biomarkers in GC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOX/genética , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Animais , Antineoplásicos/uso terapêutico , Progressão da Doença , Humanos , Terapia de Alvo Molecular/métodos , Fatores de Transcrição SOX/antagonistas & inibidores , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...